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Abstract

A new rapid method of counter-flow heat regenerators performance prediction is presented. This method is based on analytical equa-
tion (15) which can be applied for regenerators operating in broad range of period time length. The accuracy of the method has been
compared for slim regenerators with the robust method by Hill and Willmott [A. Hill, A.J. Willmott, A robust method for regenerative
heat exchanger calculations, Int. J. Heat Mass Transfer 30 (1987) 241] and for corpulent regenerators with the solution by Hill and Will-
mott [A. Hill, A.J. Willmott, Accurate and rapid thermal regenerator calculations, Int. J. Heat Mass Transfer 32 (1989) 465].
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Heat regenerators are periodic devices organizing heat
transfer from hot to cold fluids. A solid matrix is heated
by the hot fluid flowing along the matrix during half of
the regenerator period, and subsequently during the second
periodic half a cold fluid flowing along this matrix is
heated. The geometry and properties of the matrix, as well
as the fluids properties and the time length of the period,
determine the regenerator performance. The theory of heat
regenerators has a long history. First mathematical solu-
tions published in the 1920s by Heiligenstedt [1,2], Nusselt
[3,4], Hausen [5], Rummel [6], Schack [7] and Anzelius [8]
initiated the search for analytical methods of regenerators
calculation. Later publications by Gdula [9], Bes [10] and
Tomeczek [11–15] can be also included into this group.
The progress of the computer technique enabled applica-
tion of numerical methods to regenerators modelling,
where worth mentioning are the three research groups:
Willmott [16,17], Szargut [18–20] and BISRA [21]. How-
0017-9310/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
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ever, because of the long computational time the search
for improved mathematical methods continued [22–25]. A
special problem in the regenerator modelling is the heat
conduction within the matrix in the direction of fluids flow
which for rotary regenerator has been initiated by Hahne-
mann [26].

Three dimensional unsteady temperature field in the
regenerators, and consequently long computing time are
the reason that analytical solutions are still attractive for
regenerators design. The price we pay for the elegance of
the analytical solutions is the simplification of the process.
There are two distinct problems in this approach: sophisti-
cation of the mathematical methods and the accuracy of
the process description. Very often the experimental valida-
tion of the models is neglected.

The aim of the paper is to present a new rapid method
enabling accurate prediction of the heat regenerator perfor-
mance in pseudo-steady state of operation. The method is
applicable in practical range of modern regenerator param-
eters. The accuracy of the method has been compared with
the robust method by Hill and Willmott [24,25] and the dif-
ferences are very small. The regenerator model considered
is linear but the simplicity of equations makes them very
suitable for designing.
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Nomenclature

A heat transfer surface area, m2

B slimness of regenerator
Bi Biot number
cp specific heat capacity, J kg�1 K�1

Fo Fourier number
H regenerator length (height), m
i number of periods from start-up
m fluid mass flow, kg s�1

R dimensionless coordinate across the matrix
r coordinate across the matrix, m
T temperature, K
t time, s
w velocity, m s�1

Z dimensionless coordinate along the matrix
z coordinate along the matrix, m

Greek symbols

a convective heat transfer coefficient, W m�2 K�1

d matrix plate half thickness (or half diameter), m

j dimensionless heat accumulated in the matrix
k thermal conductivity, W m�1 K�1

H dimensionless temperature
q density, kg m�3

Subscripts

c cold half period
f fluid
h hot half period
l longitudinal
m medium value
p period
s solid
o short regenerator
0 fluid inlet
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2. Model equations

The real shapes of the solid matrix of an regenerator can
be treated as formed by a number of identical matrix ele-
ments of regular shapes: plates, cylinders, balls. The tem-
perature of the solid matrix element is assumed then to
be a function of only two geometrical coordinates and
the time T(r,z, t), while the fluids temperature is described
by a function of only one geometrical coordinate along
which the flow takes place, and the time Tf(z, t). The matrix
temperature can be obtained by solution of the Fourier–
Kirchhoff equation

qscps

oT sðr; z; tÞ
ot

¼~r½ks
~rT sðr; z; tÞ� ð1Þ

and the energy equation for the fluids has a form

mfcpf

oT fðz; tÞ
oz

¼ A
H

a½T sðd; z; tÞ � T fðz; tÞ�: ð2Þ

The main boundary equations are: the solid matrix

oT s

ot

����
r¼0

¼ 0; �ks

oT s

oz

����
r¼d

¼ a½T sðd; z; tÞ � T fðz; tÞ�; ð3Þ

the fluids for co-flow

T fð0; tÞ ¼ T h0 for itp 6 t < itp þ th and

T fð0; tÞ ¼ T c0 for itp þ th 6 t < ðiþ 1Þtp; ð4Þ

the fluids for counter-flow

T fð0; tÞ ¼ T h0 for itp 6 t < itp þ th and

T fðH ; tÞ ¼ T c0 for itp þ th 6 t < ðiþ 1Þtp: ð5Þ

The initial condition has a form: Ts(r,z, 0) = Tf(z, 0) = Tc0.
The periodic changes of the inlet fluids temperature (Eq.
(4) or (5)) are the reason that regenerators are not able to
reach a steady state. After sufficient number of periods a
pseudo-steady state can be identified in which the temper-
ature field within the solid matrix and fluids is identical
within each period.

There are two very important problems analyzed in
literature: • the role of reversal time during which both
fluids are present within the solid matrix, and • the role
of longitudinal heat conduction within the solid matrix.
The reversal time most often is considered by introduc-
tion of an apparent time which is a difference of the
real time and the value of the ratio H/wfm [27]. The heat
conduction along the matrix is usually neglected, how-
ever, it will be shown bellow that this is not justified in
modern regenerators in which the matrix is made of
materials characterized by high thermal conductivity. The
argument that the fluids contact surface area with
the matrix fronts (inlet and outlet) is smaller than 1% of
the total heat transfer surface area does not justify negli-
gence of the longitudinal heat conduction. In case of high
values of ks the matrix temperature distribution is strongly
influenced by heat conduction along the matrix regardless
of the heat transfer conditions at the front surfaces, which
is true even if adiabatic conditions are assumed at these
surfaces.
3. Analytical solution for pseudo-steady state

Assuming constant properties of the solid matrix and
the fluids, it is possible to write all the above equations in
a dimensionless form
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oHs

oFo
¼ r2Hs; ð6Þ

oHf

oZ
¼ B½Hsð1; Z; FoÞ �HfðZ; FoÞ�: ð7Þ

The boundary conditions for counter-flow have a form: the
solid matrix

oHs

oR

����
R¼0

¼ 0; ð8Þ

ohs

oR

����
R¼0

þ Bi½Hsð1; Z; FoÞ �HfðZ; FoÞ� ¼ 0; ð9Þ

the fluids

Hfð0; FoÞ ¼ 1 for itp 6 t < itp þ th and

Hfð1; FoÞ ¼ 0 for itp þ th 6 t < ðiþ 1Þtp: ð10Þ

Initial conditions can be written in a form

HsðR; Z; 0Þ ¼ HfðZ; 0Þ ¼ 0: ð11Þ
The dimensionless parameters in Eqs. (6)–(10) are

R ¼ r
d
; Z ¼ z

H
; Fo ¼ kst

qscpsd
2
; B ¼ Aa

mfcpf

;

Bi ¼ ad
kt
; Hs ¼

T s � T c0

T h0 � T c0

; Hf ¼
T f � T c0

T h0 � T c0

:

The performance of a regenerator is well described by
the temperature of the cold fluid at the outlet. Because this
temperature varies with time, then a medium value is used
by the designers that for regenerators, in which longitudi-
nal heat conduction is neglected, can be described by equa-
tion given in [13]

Hfc;m ¼ jðFop;Bi;BÞ Bc

FocBic

; ð12Þ

where the function j(Fop,Bi,B) means a dimensionless heat
accumulated by the solid matrix within one period. The
value j is defined as a ratio of the heat accumulated during
the heating half period to the maximum value attainable if
the matrix was heated from the inlet temperature Tc0 of the
cold fluid to the inlet temperature of the hot fluid. The
longer the regenerator period time the closer to unity is
the j(Fop,Bi,B) value, that however does not mean that
long periods favour optimal regenerator performance.
Table 1
Coefficients Ak in Eq. (13) for solid matrix of three geometries

Matrix geometry Ak

Ball 6
l2

k þ ð1� BiÞ2

l2
k þ ð1� BiÞ2 � ð1� BiÞ

sin lk

l2
k

� cos lk

lk

�

Plate 2
l2

k þ Bi2

l2
k þ Bi2 þ Bi

sin lk

lk

� �2

Cylinder 4
Bi2

Bi2 þ l2
k

1

l2
k

Most important is the cold fluid preheating Hfc,m which
in contrary increases for shorter periods. The dimensionless
heat accumulated j is then a function of three parameters:
Fo, Bi and B. For a corpulent regenerator B � 0 this func-
tion was found already by Hausen [27], Gdula [9] and
Tomeczek [11] for a plate type matrix. In case of a symmet-
rical regenerator (Foh = Foc = 1/2Fop and Bih = Bic = Bi)
a simple expression can be obtained [11]

j0ðFop;BiÞ ¼
X1
k¼1

AkðlkÞtgh
Fopl2

k

4

� �
; ð13Þ

where the coefficients Ak for three regular matrix geo-
metries are given in Table 1.

A simple analytical expression describing the dimension-
less heat accumulated can be obtained only if the tempera-
ture variation across the matrix can be neglected. This is
particularly justified for matrixes applied in modern regen-
erators. In such case for B = 0 and a symmetrical regener-
ator the solution of the periodic temperature field can be
found, which enables to calculate the heat accumulated in
a dimensionless form

j0ðF pÞ ¼
ð1� expð�F p=2ÞÞ2

1� expð�F pÞ
; ð14Þ

where Fp = Fop Æ Bi = a Æ tp/(qs Æ cps Æ d) and tp = th + tc.
For very short periods Fp! 0 the value of j0! 0, while
for long periods Fp!1 the dimensionless heat accumu-
lated within the matrix tends to unity. Eq. (14) was first
proposed by Heiligenstaedt [28] who for large Bi values
developed also a correction factor. This, however, is not
necessary if the function j0 is calculated on basis of Eq.
(13) which produces proper results for any Fop and Bi

parameters.
For slimmer regenerators having B > 0 a solution of

j(Fop,Bi,B) was found by Tomeczek for co-flow [12] and
for counter-flow [13]. In case where the temperature varia-
tion across the matrix can be neglected and B > 0 a robust
method for j calculation has been presented by Hill and
Willmott [24,25] in which, however, no analytical equation
is given. This topic was tackled earlier by Tomeczek [14]
who was able to calculate for a similar regenerator the per-
formance with good accuracy.
Eigenvalues Source
�2

lkctglk = 1 � Bi [15]

ctglk ¼
lk

Bi [9,11]

J0ðlkÞ
J1ðlkÞ

¼ lk

Bi
[15]
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The mean preheat temperature determined by Eq. (12) is
a function of three parameters: Fo, Bi and B. In case of
symmetrical regenerators this function calculated by Tom-
eczek [13] for plate type matrix on basis of a formal solu-
tion for j is presented in Fig. 1 on example of two values
of B = 1 and 5. It can be seen that as the period time
becomes smaller the preheat Hfc,m (at constant B and Bi)
tends to an asymptotic value (dashed line) determined by
the function B/(2 + B), known also in literature [24,25].
The four solid lines for each B, representing different values
of Biot number, enable to examine the influence of design-
ing parameters on regenerator performance. For example,
let us consider a regenerator having: B = 1, Fop/2 = 1
and Bi = 2. Decreasing the matrix plate thickness by a fac-
tor 2 we increase the Fourier number four times and at the
same time the Biot number becomes twofold smaller. Thus
in consequence the mean preheat temperature Hfc,m

changes slightly from 0.223 to 0.191. Increasing the regen-
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Fig. 1. Mean preheat temperature for symmetrical counter-flow regener-
ator as function of: Foh = Foc = Fop/2, Bih = Bic = Bi, Bh = Bc = B [13].

Table 2
Comparison of calculated cold fluid preheat in a counter-flow slim regenerato

Fh = Fc = Fp/2 Hfc,m

Bh = Bc = B = 100 Bh = Bc = B

Present method
Eqs. (14) and (15)

Hill and
Wilmott [24]

Present meth
Eqs. (14) an

0.000 0.98039 0.98088* 0.99206
0.025 0.98039 0.98064 0.99206
0.050 0.98039 0.98039 0.99206
0.075 0.98039 0.98015 0.99206
0.100 0.98039 0.97990 0.99206

* should be: 0.98039
erator slimness from B = 1 to 5 at constant Fop/2 = 1 and
Bi = 2 we get higher preheat equal 0.599 instead of 0.223.

Analysing the curves presented in Fig. 1 we can notice
that in a symmetrical regenerator the dimensionless cold
fluid mean preheat temperature Hfc,m can be described by
a single equation

Hfc;m ¼ 2
B
F p

jðF p;BÞ ¼ 4
B

2þ B
j0ðF p=BÞ

F p=B
; ð15Þ

where Fp = a Æ tp/(qs Æ cps Æ d) and the function j0(Fp/B) is
defined by Eq. (14) in which the argument Fp should be
replaced by (Fp/B). Eq. (15) together with Eq. (14) can be
applied also for regenerators with matrixes having thick
walls but the accuracy becomes smaller as the Biot number
increases. In such cases we can assume Fp = Fop Æ Bi, how-
ever, the results are burden with error depending on Biot
number. Applying Eq. (13) for j0(Fp/B) in Eq. (15) we
get accurate Hfc,m values also for large Bi numbers. The
function j0(Fp/B)/(Fp/B) tends to the value of 1/4 for very
short cycle time Fp! 0, so the limit mean cold fluid
preheat can be calculated from a simple relation
Hfc,m = B/(2 + B).

4. Discussion

The accuracy of the proposed rapid method has been
examined first on basis of the cold fluid exit temperature
Hfc,m from slim regenerators by comparison with the Hill
and Willmott [24] solution, and the results are given in
Table 2. The analyzed in Table 2 range of slimness
(Bh = Bc = 100–500) is somewhat unrealistic, nevertheless
it has been considered because Hill and Willmott [24]
claimed, that theirs robust method can deal with such cases
in contrary to other methods. As can be seen in Table 2 the
difference between the two methods is very small even for
the largest value of B. The proposed rapid method does
not show any influence of the considered cycle time Fp

on the preheat values, while the Hill an Willmott results
[24] demonstrate small variation of Hfc,m. This probably
is the consequence of the numerical procedure applied in
[24], because the values of Hfc,m for (Fp/2) = 0 are slightly
over predicted in [24].
r

= 250 Bh = Bc = B = 500

od
d (15)

Hill and
Willmott [24]

Present method
Eqs. (14) and (15)

Hill and
Willmott [24]

0.99226* 0.99602 0.99611*

0.99216 0.99602 0.99606
0.99206 0.99602 0.99601
0.99196 0.99602 0.99596
0.99186 0.99602 0.99591

0.99206 0.99602



Table 3
Comparison of calculated cold fluid preheat in a counter-flow corpulent regenerator

Fh = Fc = Fp/2 Hfc,m

Bh = Bc = B = 1.0 Bh = Bc = B = 5.0 Bh = Bc = B = 10.0

Present method
Eqs. (14) and (15)

Hill and
Wilmott [25]

Present method
Eqs. (14) and (15)

Hill and
Willmott [25]

Present method
Eqs. (14) and (15)

Hill and
Willmott [25]

0.5 0.32656 0.3304 0.71369 0.7134 0.83316 –
1.0 0.30808 0.3221 0.71191 0.7109 0.83264 0.8322
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Fig. 3. Mean preheat calculated by Eqs. (14) and (15) for symmetrical
counter-flow heat regenerator as function of period time for three values
of slimness.

4198 J. Tomeczek, M. Wne�k / International Journal of Heat and Mass Transfer 49 (2006) 4194–4199
Table 3 presents comparison of the mean preheat
temperature calculated by the proposed method with the
Hill and Willmott [25] results for corpulent regenerators.
It can be seen that for the very small B � 1 value utilization
of Eq. (15) or (16) leads to a largest difference between the
methods. The B � 1 value is, however, of no practical use.
In case of larger more practical B > 5 the two methods
produce very good agreement.

The relation between the Hfc,m and B is presented in
Fig. 2 for regenerators in which the temperature variation
across the solid matrix is neglected. Three lines for different
period time Fp are presented, including the line represent-
ing the limit case for Fp! 0. A sharp increase of the cold
fluid preheat can be observed for small B 6 20, above
which the length of the regenerator operating with short
time periods has only small influence on the preheat. For
longer periods Fp = 40 we observe considerable preheat
increase until slimness B � (40–50). The role of the period
time on preheat is clearly seen in Fig. 3. Shortening the
cycle time can effectively influence the preheat only to the
value Fp/B � 1 below which almost no preheat can be
gained. For the slimness B = 5 it is possible to compare
the Hfc,m values calculated by Eqs. (15) and (14) with that
given in Fig. 1. The new rapid methods slightly over pre-
dicts the results in Fig. 1 for large Biot numbers Bi > 1
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Fig. 2. Mean preheat temperature calculated by Eqs. (14) and (15) for
symmetrical counter-flow heat regenerator as function slimness and period
time.
but for smaller Bi the accuracy is very good. Applying
Eq. (13) instead of (14) in Eq. (15) we get exactly the same
results as presented in Fig. 1.

The asymmetry of regenerators operation (Foh 5 Foc,
Bih 5 Bic and Bh 5 Bc) in practical cases is not large. Usu-
ally, because the solid matrix material thermal properties as
a function of temperature are not known exactly, then we
can assume Foh = Foc. For the two other parameters a
ratio can be observed: Bih/Bic = (1.1–1.5) and Bh/Bc =
(0.9–1.3). In this range of value it is possible to treat the
regenerator as a symmetrical device with the mean para-
meters, calculated for example according to Hausen
[27,25] method.

The role of the heat conduction within the solid matrix
along the direction of fluids flow (z coordinate) on the
regenerator performance has been examined numerically
[29]. Two regenerators built of the same material (SiSiC),
having coefficient of heat conduction ks = 150 W/(m K),
were considered: (a) Fo = 44, B = 4.7, Bi = 3 · 10�3; (b)
Fo = 427, B = 12, Bi = 1.3 · 10�3. The hot fluid inlet tem-
perature was assumed Th0 = 1200 �C equal in both cases.
The regenerators operated in a counter-flow mode. It has
been found that taking into account the heat conduction
along the fluids flow direction abates the preheat tempera-
ture Hfc,m by about 3.8% in case (a) and by 11.6% in case
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(b), that should be remembered when the accuracy of
regenerator modelling is considered. The computed reduc-
tion of the preheat Hfc,m can be compared qualitatively
with the values from the graphs published by Bahnke
and Howard [30] presenting the effect of heat conduction
within the matrix along the fluid flow direction in rotary
regenerators for the conduction parameter K = (kslAsl)/
(CfH) in which Asl means the solid matrix cross-section
area conducting heat in longitudinal direction and Cf =
mfcpf. London [30,31] proposed for K < 0.1 and B > 10 a
simplified relation enabling correction of the cold fluid
preheat for longitudinal conduction

Hfc;mðksl 6¼ 0Þ
Hfc;mðksl ¼ 0Þ ffi 1� K: ð16Þ

For the considered in [29] two regenerators the conduction
parameter was equal: Ka � 0.05 for regenerator (a) and
Kb � 0.1 for regenerator (b). Thus the simple relation
(16) is a good engineering approximation. The same
parameter K was also used for testing of the longitudinal
heat conduction during single fluid blow in the regenerator
[32].

5. Conclusions

The presented method based on analytical Eq. (15)
allows for rapid calculation of the pseudo-steady state of
counter-flow symmetrical heat regenerators in broad range
of parameters.

The strength of the method is the speed of regenerator
performance calculation, while the weakness comes from
the model linearity. This, however, may be partially over-
come by applying iterative procedure allowing for some
nonlinearity caused by the temperature dependence of ther-
mal properties.

Comparison of the mean air preheat temperature calcu-
lated by the proposed method with those published earlier
[24,25] shows satisfactory accuracy for both corpulent and
slim regenerators.
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Stahleisen Verlag, Düsseldorf, 1951.

[29] M. Wne�k, Badania regeneratora ciepla zintegrowanego z palnikiem
gazowym dla wysokotemperaturowych pieców grzewczych. Ph.D.
Thesis, Katowice 2005.

[30] G.D. Bahnke, C.P. Howard, The effect of longitudinal heat conduc-
tion on periodic-flow heat exchanger performance, Trans. ASME, J.
Eng. Power 86 (1964) 105.

[31] T.J. Lambertson, Performance factors of a periodic flow heat
exchanger, Trans. ASME, J. Eng. Power 80 (1958) 586.
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